Natural Antimicrobial Peptides: An Emerging Therapeutic Agent against Pathogens

Main Article Content

Abhishek Kumar
Shilpi Yadav
Ruchi Sankhwar
Ravi Kr. Gupta

Abstract

The rate of discovery of new antibiotic is slower than the emergence of antibiotic-resistant strains in the environment. This global problem is more acute in developing countries. Therefore, it is necessary to develop some alternative approaches to combat infections caused by pathogenic microorganisms and resistant strains. Natural antimicrobial peptides (NAMPs) are potent antimicrobial peptides that are isolated from different sources like plants, animals, humans, bacteria, and fungi. These antimicrobial peptides may have a ribosomal or non-ribosomal origin. Natural antimicrobial peptides have diverse functions in agriculture, pharmaceutical and food industries. NAMPs have been used as food preservatives against food-borne pathogens thereby increasing the shelf-life of food items. NAMPs are useful in the treatment of wounds, ulcers, skin and soft tissue infections caused by microorganisms. Different types of NAMPs are universal in nature and show broad-spectrum antimicrobial activities. NAMPs exhibit great potency against multidrug-resistant bacteria like methicillin-resistant Staphylococcus aureus (MRSA). They have unique characteristics of targeting multiple pathogenic strains and prevent the emergence of natural resistance. In this review article, we systematically discussed different types of natural antimicrobial peptides, their classification, expression, diversity and source. We also explored their mode of action, genetic regulation and application as an alternative therapeutic agent.

Keywords:
Natural Antimicrobial Peptides (NAMPs), animal peptides, plants peptide, lantibiotics, alternative therapeutics.

Article Details

How to Cite
Kumar, A., Yadav, S., Sankhwar, R., & Gupta, R. K. (2020). Natural Antimicrobial Peptides: An Emerging Therapeutic Agent against Pathogens. International Journal of TROPICAL DISEASE & Health, 41(15), 1-17. https://doi.org/10.9734/ijtdh/2020/v41i1530354
Section
Review Article

References

Xiaojing Xia. Likun Cheng.Shouping Zhang.Lei Wang.Jianhe Hu. The role of natural antimicrobial peptides during infection and chronic inflammation. Antonie van Leeuwenhoek, Journal of Microbiology. 2018;111: 5–26.

Tiwari BK, Valdramidis VP, O’Donnell CP, Muthukumarappan K, Bourke P, Cullen PJ. Application of natural antimicrobials for food preservation. J. Agric. Food Chem. 2009;57:5987– 6000.

Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci USA. 2016;113:5970–5975.

Oliver JD. The viable but nonculturable state in bacteria. J Microbiol. 2005;43:93–100.

Fleming A. On a remarkable bacteriolytic element found in tissues and secretions. Proc Royals Lon. 1922;93:306–317.

Salton MRJ. The lysis of microorganisms by lysozyme and related enzymes. J Gen Microbiol. 1958;18:481–490.

Hotchkiss RD, Dubos RJ. Fractionation of the bactericidal agent from cultures of a soil Bacillus. Curr Prot Pept Sci. 1940;132:791–792.

Gause GF, Brazhnikova MG. Gramicidin S and its use in the treatment of infected wounds. Nature. 1944;54:703.

Zaffiri L, Gardner J, Toledo PH. History of antibiotics from salvarsan to cephalosporins. J Invest Surg. 2012;25:67–77.

Fernandez de Caleya R, Gonzalez-Pascual B, Garcia OF,Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol. 1972;23:998–1000.

Mak AS, Jones BL. Amino acid sequence of wheat betapurothionin. Can J Biochem. 1976;54:835–842.

Ohtani S, Okada T, Yoshizumi H, Kagamiyama H. Complete primary structures of 2 subunits of purothionin-A, a lethal protein for brewers yeast from wheat flour. J Biochem. 1977;82:753–767.

Groves ML, Peterson RF, Kiddy CA. Polymorphism in the red protein isolated from milk of individual cows. Nature. 1965;207:1007–1008.

Stephens JM, Marshall J. Some properties of an immune factor isolated from the blood of actively immunised wax moth larvae. Can J Microbiol. 1962;8:719–725.

Brogden KA, Ackermann M, Huttner KM. Small, anionic, and charge-neutralizing propeptide fragments of zymogens are antimicrobial. Int J Antimicro Agents. 1997;1:1615–1617.

Bagley CP. Potential role of synthetic AMPs in animal health to combat growing concerns of antibiotic resistance—a review. Wyno Acad J Agri Sci. 2014;2(2):19–28.

Joerger RD. Alternatives to Antibiotics: Bacteriocins, Antimicrobial Peptides and Bacteriophages, Poultry Science. 2003;82:640–647.

Baba T, Schneewind O. Instruments of microbial warfare: bacteriocin synthesis, toxicity and immunity, Trends Microbiol. 1998;6:66–71.

Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H. The continuing story of class IIa bacteriocins, Microbiol Mol Biol Rev. 2006;70(2):564-82 .

Ross KF, Ronson CW, Tagg JR. Isolation and characterization of the lantibiotic salivaricin A and its structural gene sale from Streptococcus salivarius 20P3. Appl. Environ. Microbiol. 1993;59:2014-2021.

Jung G. Lantibiotics-ribosomally synthesized biologically active polypeptides containing sulfide bridges andα,β-didehydroamino acids. Angewandte Chemie (International ed. In English). 1991;30:1051-1192.

De Vuyst L, Vandamme EJ. Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications. Blackie Academic and Professional, London; 1994.

Rogers LA, Whittier ED. Limiting factors in lactic fermentation. J. Bacteriol. 1928;16:211-229.

El-Ziney MG, van den Tempel T, Debevere JM, Jakobsen M. Application of reuterin produced byLactobacillus reuteri 12002 for meat decontamination and preservation. Journal of Food Protection. 1999;(62):257-261.

Mota-Meira M, LaPointe G, Lacroix C, Lavoie MC. MICs of mutacin B- Ny266,nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob.Agents Chemother. 2000;44:24–29. DOI:10.1128/AAC.44.1.24- 29.2000.

Brumfitt W, Salton MR, Hamilton-Miller JM. Nisin, alone and combined withpeptidoglycan-modulating antibiotics: activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J. Antimicrob. Chemother. 2002;50:731–734.

Cotter PD, Hill C, Rose RP. Bacterial Lantibiotic:Strategies to improve therapeutic potential. Curr Protein Pept Sci. 2005;6:61-75.

Piper C, Draper LA, Cotter PD, Ross RP, Hill C. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species.J. Antimicrob. Chemother. 2009;64:546–551.

Niu WW, Neu H. Activity of mersacidin, a novel peptide, compared with that of vancomycin, teicoplanin, and daptomycin.Antimicrob. Agents Chemother. 1991;35:998– 1000.

Hoffmann A, Pag U, Wiedemann I, Sahl HG. Combination of antibiotic mechanisms in lantibiotics. Farmaco. 2002;57:685–691.

Appleyard AN, Choi S, Read DM, Lightfoot A, Boakes S, Hoffmann A, et al. Dissecting structural and functional diversity of the lantibiotic mersacidin.Chem. Biol. 2009;16:490–498.

Galvin M, Hill C, Ross RP. Lacticin 3147 displays activity in buffer against gram- positive bacterial pathogens which appear insensitive in standard plate assays. Lett. Appl. Microbiol. 1999;28:355–358.

Lawton EM, Ross RP, Hill C, Cotter PD. Two-peptide lantibiotics: a medical perspective. Mini Rev. Med. Chem. 2007;7:1236–1247.

Bonelli RR, Schneider T, Sahl HG, Wiedemann I. Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies. Antimicrob. Agents Chemother. 2006;50:1449–1457.

Grasemann H, Stehling F, Brunar H, Widmann R, Laliberte TW, Molina L, et al. Inhalation of Moli1901 in patients with cystic fibrosis. Chest. 2007;131:1461– 1466.

Vriens K, Cammue BP, Thevissen K. Antifungal plant defensins: Mechanisms of action and production. Molecules. 2014;19:12280–12303.

Asano T, Miwa A, Maeda K, Kimura M, Nishiuchi T. The secreted antifungal protein thionin 2.4.in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum. PLoS Pathog. 2013;9:1003581.

Stotz HU, Thomson JG, Wang Y. Plant defensins: Defense, development and application.Plant Signal.Behav. 2009;4:1010–1012.

De Lucca AJ, Walsh TJ. Antifungal peptides: Novel therapeutic compounds against emerging pathogens. Antimicrob. Agents Chemother. 1999;43:1–11.

Ceylan E, Fung DYC. Antimicrobial activity of spices.Journal of Rapid Methods & Automation In Microbiology. 2004;12(1):1-55.

Vernon LP, Evett GE, Zeikus RD, Gray WR. A Toxic Thionin from Pyrularia pubera: Purification, Properties, and Amino Acid Sequence. Archives of Biochemistry & Biophysics. 1985;238(1):18-29.

Beintema JJ. Structural Features of Plant Chitinases and Chitin-Binding Proteins. FEBS Letters. 1994;350:159-163.

Strempel N, Strehmel Overhag J. Potential application of antimicrobial peptidein the treatment of bacterial biofilm infections. Curr Pharma Des. 2015;21:67–84.

Reiter B, HaÈrnulv G. Lactoperoxidase antibacterial system: Natural occurrence,biological functions and practical applications. Journal of Food Protection. 1984;47:724-732.

Korpela J. Avidin, a high affinity biotin-binding protein as a tool and subject of biological research. Medical Biology. 1984;62:5-26.

Burrowes OJ, Hadjicharalambous C, Diamond G, Lee TC. Evaluation of antimicrobial spectrum and cytotoxic activity of pleurocidin for food applications. Journal of Food Science. 2004;69(3):66-71.

Burton E, Gawande PV, Yakandawala N, LoVetri K, Zhanel GG, Romeo T, et al. Antibiofilm activity of Glm U enzyme inhibitors against catheter-associated uropathogens.Antimicrobial Agents and Chemotherapy. 2006;50(5):1835-1840.

Takahashi D, Shukla SK, Prakash O, Zhang G. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie. 2010;92:1236–1241.

Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29,464–472.

Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit. Rev. Biotechnol. 2012;32:143–171.

Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance.Pharmacol. Rev. 2003;55:27–55.

Epand RM, Vogel HJ. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta. 1999;1462:11–28.

Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30:131–141.

Hunter HN, Demcoe AR, Jenssen H, Gutteberg TJ, Vogel HJ. Human lactoferricin is partially folded in aqueous solution and is better stabilized in a membrane mimetic solvent. Antimicrob. Agents Chemother. 2005;49:3387–3395.

Legrand D, Elass E, Carpentier M, Mazurier J. Lactoferrin: a modulator of immune and inflammatory responses. Cell. Mol. Life Sci. 2005;62:2549–2559.

Powers JP, Hancock RE. The relationship between peptide structure and antibacterial activity. Peptides. 2003;24:1681–1691.

Yount NY, Bayer AS, Xiong YQ, Yeaman MR. Advances in antimicrobial peptide immunobiology. Biopolymers. 2006;84:435–458.

Brogden KA, Ackermann M, McCray PB Jr, Tack BF. Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents. 2003;22:465–478.

Brogden KA, Guthmiller JM, Salzet M, Zasloff M. The nervous system and innate immunity: the neuropeptide connection. Nat Immunol. 2005;6:558–564.

Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–395.

Ganz T, Selsted ME, Szklarek D, Harwig SL, Daher K, Bainton DF, Lehre RI. Defensins—natural peptide antibiotics of human neutrophils. J Clin Invest. 1985;76:427–1435.

Boman HG. Antimicrobial peptides. Chairman‘s opening remarks. Ciba Found Symp. 1994;186:1–4.

Izadpanah A, Gallo RL. Antimicrobial peptides. J Am Acad Dermatol. 2005;52:381–390.

Marcinkiewicz M, Majewski S. The role of antimicrobial peptides in chronic inflammatory skin diseases. Postępy Dermatologii i Alergologii. 2016;33:6-12.

Zhang LJ, Gallo RL. Antimicrobial peptides. Curr Biol. 2016;26:14-19.

Borovaya A, Dombrowski Y, Zwicker S, Olisova O, Ruzicka T, et al. Isotretinoin therapy changes the expression of antimicrobial peptides in acne vulgaris.Arch Dermatol Res. 2014;306:689-700.

Ling-juan Zhang and Richard L. Gallo. Antimicrobial peptides. Current Biology. 2016;26:1–21.

Zeth K, Sancho-Vaello E. The human antimicrobial peptides dermcidin and LL- 37 show novel distinct pathways in membrane interactions. Frontiers in Chemistry. 2017;5:86.

Guang Shun W. Human antimicrobial peptides and proteins. Pharmaceuticals. 2014;7:545- 594.

Wang G, Mishra B, Lau K, Lushnikova T, Golla R, et al. Antimicrobial peptides in 2014. Pharmaceuticals (Basel). 2015;8:123-150.

Adlerova L, Bartoskova A, Faldyna M. Lactoferrin: a review ‖ (PDF). Veterinarni medicina.2008;53(9):457.

Sanchez L, Calvo M, Brock JH. Biological role of lactoferrin. Arch. Dis Child. 1992;67:657–661.

Arnold RR, Cole MF, McGhee JR. A bactericidal effect for human lactoferrin. Science. 1977;197:263–265.

Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta. 1992;1121:130–136.

Brouwer CP, Rahman M, Welling MM. Discovery and development of a synthetic peptide derived from lactoferrin for clinical use. Peptides. 2011;32:1953–1963.

Dijkshoorn L, Brouwer CP, Bogaards SJ, Nemec A, van den Broek PJ, Nibbering PH. The synthetic N-terminal peptide of human lactoferrin, hLF(1–11), Is highly effective against experimental infection caused by multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2004;48:4919–4921.

Lupetti A. Paulusma-Annema A, Welling MM, Senesi S, van Dissel JT, Nibbering PH. (2000)Candidacidal activities of human lactoferrin peptides derived from the N terminus. Antimicrob. Agents Chemother. 2000;44:3257–3263.

Lupetti A, Paulusma-Annema A, Welling MM, Dogterom-Ballering H, Brouwer CP, Senesi S, Van Dissel JT, Nibbering PH. Synergistic activity of the N-terminal peptide of human lactoferrin and fluconazole against Candida species. Antimicrob. Agents Chemother. 2003;47:262–267.

Berrocal-Lobo M, Molina A, Rodríguez-Palenzela P, Garcia-Olmedo F, Rivas L. Leishmania donovani: Thionins, Plant Antimicrobial Peptides with Leishmanicidal Activity.Experimental Parasitology. 2009;122:247-249.

Apel K, Andresen I, Becker W, Schluter K, Burges J, Parthier B. The Identification of Leaf Thionin as One of the Main Jasmonate-Induced Proteins ofBarley (Hordeum vulgare).Plant Molecular Biology. 1992;19(2):193-204.

Florack DE, Stiekema WJ. Thionins: Properties, Possible Biological Roles and Mechanisms of Action. Plant Molecular Biology. 1994;26(1):25-37.

Padovan L, Scocchi M, Tossi A. Structural Aspects of Plant Antimicrobial Peptides.Current Protein & Peptide Science. 2010;11:210-219.

Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HG. Specific binding of nisin to the peptidoglycan precursor ipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem. 2001;276:1772–1779.

Eijsink VGH, Axelsson L, Diep DB, Havarstein LS, Holo H, Nes IF. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek J. of Microbiology. 2002;81:639–654.

Brotz H, Josten M, Wiedemann I, Schneider U, Gotz F, Bierbaum G, Sahl HG. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol. 1998;30:317–327.

Hsu ST, Breukink E, Tischenko E, Lutters MA, de Kruijff B, Kaptein R, Bonvin AM, van Nuland NA. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol. 2004;11:963–967.

Hasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, de Kruijff B, Breukink E. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science. 2006;313:1636–1637.

Breukink E, de Kruijff B. Lipid II as a target for antibiotics. Nat Rev Drug Discov. 2006;5:321–332.

Giudici M, Pascual R, De La Canal L, Pfüller K, Pfüller U, Villalaín J. Interaction of Viscotoxins A3 and B with Membrane Model Systems: Implications to Their Mechanism of Action, Biophysical Journal. 2003;85(2):971-98.

Chandy T, Sharma CP. Chitosan-as a biomaterial. Biomaterials, Artificial Cells, and Artificial Organs.1990;18:1-24.

Ngo DH, Kim SK. Chapter Two— Antioxidant effects of chitin, chitosan, and their derivatives. In: Kim SK, editor. Advances in Food and Nutrition Research. Waltham, MA, USA: Academic Press. 2014;73:15.

Zakharchenko NS, Rukavtsova EB, Gudkov AT, Buryanov Ya I. Enhanced Resistance to Phytopathogenic Bacteria in Transgenic Tobacco Plants with Synthetic Gene of Antimicrobial Peptide Cecropin P1, Russ. J. Genetics. 2005;41:1187– 1193.

Hancock REW, Chapple DS. Peptide antibiotics. Antimicrob Agents Chemother. 1993;43:1317–1323.

Vizioli J, Salzet M. Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol Sci. 2002;23:494–496.

Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan JW, Mader S, White JH . Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173:2909–2912.

Schauber J, Dorschner RA, Yamasaki K, Brouha B, Gallo RL. Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology. 2006;118:509–519.

Gallo RL, Kim KJ, Bernfield M, Kozak CA, Zanetti M, Merluzzi L, Gennaro R. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem. 1997;272:13088–13093.

Peyssonaux C, Johnson RS. An unexpected role for hypoxic response:oxygenation and inflammation. Cell Cycle. 2004;3:168–171.

Zaiou M, Nizet V, Gallo RL. Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Invest Dermatol. 2003;120:810–816.

Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH. FALL- 39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA. 1995;92:195–199.

Henzler-Wildman KA, Martinez GV, Brown MF, Ramamoorthy A. Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37.Biochemistry. 2004;43:8459–8469.

Kristian SA, Timmer AM, Liu GY, Lauth X, Sal-Man N, Rosenfeld Y, Shai Y, Gallo RL, Nizet V. Impairment of innate immune killing mechanisms by bacteriostatic antibiotics. FASEB J. 2007;21:1107-1116.

Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC, Hancock RE, Speert DP. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol. 2004;172:1146– 1156.

Borregaard N, Heil aard- nch K, Sorensen OE, Cowland JB. Regulation of human neutrophil granule protein expression, Curr. Opin. Hematol. 2001;8|:23–27.

Nagaoka I, Hirata M, Sugimoto K, Tsutsumi-Ishii Y, Someya A, Saionji K, Igari J. Evaluation of the expression of human CAP18 gene during neutrophil maturation in the bone marrow, J. Leukoc. Biol.1998;64:845–852.

Wang Y, Agerberth B, Lothgren A, Almstedt A, Johansson J. Apolipoprotein A-I binds and inhibits the human antibacterial/cytotoxic peptide LL-37, J. Biol. Chem. 1998;273:33115–33118.

Wang Y, Johansson J, Agerberth B, Jornvall H, Griffiths WJ. The antimicrobial peptide LL-37 binds to the human plasma protein apolipoprotein A-I, Rapid Commun.Mass Spectrom. 2004;18:588–589.

Sorensen OE, Bratt T, Johnsen AH, Madsen MT, Borregaard N. The human antibacterial cathelicidin, hCAP-18, is bound to lipoproteins in plasma, J. Biol. Chem. 119;274:22445–22451.

Stroingg N, Srivastava MD. Modulation of toll-like receptor 7 and LL- 37 expression in colon and breast epithelial cells by human beta-defensin 2, Allergy Asthma Proc. 2005;26:299–309.

Com E, Bourgeon F, Evrard B, Ganz T, Colleu D, Jegou B, Pineau C. Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol Reprod. 2003;68:95-104.

Nakayama K, Okamura N, Arai H, Sekizawa K, Sasaki H. Expression of human beta defensin-1 in the choroid plexus. Ann Neurol. 1999;45:685.

Raj PA, Dentino AR. Current status of defensins and their role in innate and adaptive immunity.FEMS Microbiol Lett. 2002;206:9–18.

Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL, McCray PB Jr. Discovery of five conserved beta -defensin gene clusters using a computational search strategy. Proc Natl Acad Sci USA. 2002;99:2129–2133.

Boman HG. Gene-encoded peptide antibiotics and the concept of innate immunity:an update review. Scand J Immunol. 1998;48:15–25.

Harwig SS, Ganz T, Lehrer RI. Neutrophil defensins: purification, characterization,and antimicrobial testing. Methods Enzymol. 1994;236:160–172.

Chaly YV, Paleolog EM, Kolesnikova TS, Tikhonov II, Petratchenko EV, Voitenok NN. Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur Cytokine Netw. 2000;11:257–266.

Delves-Broughton J. Nisin and its uses as a food preservative. Food Technology. 1990;44(3):100 117.

Cotter PD, Hill C, Ross RP. Bacterial lantibiotics: strategies to improve therapeutic potential. Current Protein and Peptide Science. 2005;6(1):61–75.

Broadbent JR, Chou YC, Gillies K, Kondo JK. Nisin inhibits several Gram- positive, mastitis-causing pathogens. Journal of Dairy Science. 1989;72(12):3342– 3345.

Limbert M, Isert D, Klesel N, Markus A, Seibert G, Chatterjee S, et al. Chemotherapeutic properties of mersacidin in vitro and in vivo, in: G. Jung, HG Sahl (Eds.), Nisin and novel lantibiotics, ESCOM, Leiden, The Netherlands. 1991;448–456.

Ryan MP, Hill C, Ross RP.) Exploitation of lantibiotic peptides for food and medical uses.In: Peptide antibiotics - discovery, mode of action and applications. MA.Haxell HAI, McArthur RG, Wax Marcel Dekker, New York. 2002;193–242.

Fontana MB, de Bastos Mdo C, Brandelli A. Bacteriocins Pep5 and epidermin inhibit Staphylococcus epidermidis adhesion to catheters. Current Microbiology. 2006;52(5):350–353.

Juneja VK, Dwivedi HP, Yan X. Novel natural food antimicrobials.Annual Review of Food Science and Technology. 2012;3:381-403.

Anany H, Brovko LY, El-Arabi T, Griffiths MW. Bacteriophages as antimicrobials in food products: History, biology and application. In: Handbook of Natural Antimicrobials for Food Safety and Quality. USA, Woodhead Publishing. 2014;69.

ZhaoT, Doyle MP, Harmon BG, Brown CA, Mueller PO, Parks AH. Reduction of carriage of enterohemorrhagic Escherichia coli O157:H7 in cattle by inoculation with probiotic bacteria. J Clin Microbiol. 1998;36:641–647.

Piper C, Draper LA, Cotter PD, Ross RP, Hill C. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species.J Antimicrob Chemother. 2009;64:546–551.

Rea MC, Sit CS, Clayton E, O‘Connor PM, Whittal RM, Zheng J, Vederas JC, Ross RP, Hill C. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Natl Acad Sci USA. 2010;107(9):352–9357.

Rea MC, Dobson A, O‘Sullivan O, Crispie F, Fouhy F, Cotter PD, Shanahan F, Kiely B, Hill C, Ross RP. Microbes and Health Sackler Colloquium: effect of broad- and narrowspectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon.Proc Natl Acad Sci USA. 2010;15:4639–4644.

Aslam S, Hamill RJ, Musher DM. Treatment of Clostridium difficile- associated disease: old therapies and new strategies. Lancet Infect Dis. 2005;5:549–557.

Goldstein BP, Wei J, Greenberg K, Novick R. Activity of nisin against Streptococcus pneumoniae, in vitro, and in a mouse infection model. J Antimicrob Chemother. 1998;42:277–278.

Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother. 2004;54:648–653.

Howell TH, Fiorellini JP, Blackburn P, Projan SJ, de la Harpe J, Williams RC. The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. J Clin Periodontol. 1993;20:335–339.

Twomey DP, Wheelock AI, Flynn J, Meaney WJ, Hill C, Ross RP. Protection against Staphylococcus aureus mastitis in dairy cows using a bismuth-based teat seal containing the bacteriocin, lacticin 3147. J Dairy Sci. 2000;83:1981–1988.

Lopez FE, Vincent PA, Zenoff AM, Salomon RA, Farias RN. Efficacy of microcin J25 in biomatrices and in a mouse model of Salmonella infection. J Antimicrob Chemother. 2007;59:676–680.

Bavin EM, Beach AS, Falconer R, Friedmann R. Nisin in experimental tuberculosis. Lancet. 1952;1:127–129.

Bastos MCF, Coutinho BG, Coelho MLV. Lysostaphin:a staphylococcal bacteriolysin with potential clinical applications. Pharmaceuticals. 2010;3:1139–1161.

Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005;3:777–788.

Suganthi V, Selvaranjan E, Subathra Devi C, Mohan Srinivasan V. Lantibiotic nisin: natural preservative from Lactococcus lactis. Int J Res Pharma. 2012;3(1):13–19.

D’Amato D, Sinigaglia M. Antimicrobial agents of microbial origin : Nisin. In: Bevilacqua A, Rosaria M, Sinigaglia M (Ed) Application of alternative food-preservation technologies to enhance food safety and stability, 1st edn. Bentham Science, USA. 2010;83– 91.

Galvez AM, Grande Burges MJ, Lucas Loper R, Perez Pulido R. Natural antimicrobials for food preservation. In: Galvez A, GrandeBurgos MJ, Lucas Lopez R, Perez Pulido R (eds) Food biopreservation. Springer, New York. 2014;1–14.

Upendra RS, Khandelwal P, Jana K, Ajay Kumar N, Gayathri Devi M, Stephaney ML. Bacteriocin production from indigenous strains of lactic acid bacteria isolated from selected fermented food sources. Int J Pharma Res Health Sci. 2016;4(1):982–990.

Bezares BR, Saenz Beatriz Y, Zarazaga M, Torres C, Larrea RZ. Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria. Int J Food Microbiol. 2007;116:32–36.

Settanni L, Corsetti A. Application of bacteriocins in vegetable food biopreservation . Int J Food Microbiol. 2008;121:123–138.

Fadaei V. Milk Proteins-derived antibacterial peptides as novel functional food ingredients. Ann Biol Res. 2012;3(5):2520–2526.

Oard SV, Enright FM. Expression of the antimicrobial peptides in plants to control phytopathogenic bacteria and fungi. Plant Cell Rep. 2006;25:561–572.

Jaynes JM, Nagpala P, Destefanobeltran L, Huang JH, Kim JH, Denny T, Centiner S. Expression of a cecropin-B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum.Plant Sci. 2002;89:43– 53.

Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J,Rommens CM. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol. 2000;18:1307–1310.

Osusky M, Osuska L, Hancock RE, Kay WW, Misra S. Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res. 2004;13:181–190.

Alan AR, Blowers A, Earle ED. Expression of a magainin-type antimicrobial peptide gene (MSI-99) in tomatoes enhances resistance to bacterial speck disease. Plant Cell Rep. 2004;22:388– 396.

Schaefer SC, Gasic K, Cammue B, Broekaert W, van Damme EJ, Peumans WJ, Korban SS. Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta. 2005;222:858–866.

Peters RJ. Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants.Phytochemistry. 2006;67:23072317.

Coca M, Penas G, Gomez J, Campo S, Bortolotti C, Messeguer J, Segundo BS. Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta. 2006;223:392–406.

Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H. Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett. 2000;484:7–11.

Norelli JL, Borejsza-Wysocka E, Reynoird JP, Aldwinckle HS. Transgenic Royal Gala‘ apple expressing attacin E has increased field resistance to Erwinia amylovora (fire blight).Acta Hortic. 2000;538:631–633.

Vidal JR, Kikkert JR, Malnoy MA, Wallace PG, Barnard J, Reisch BI. Evaluation of transgenic Chardonnay‘ (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res. 2006;15:69–82.

Wan ML, Ling KH, Wang MF El-Nezami H. Green tea polyphenol epigallocatechin-3-gallate improves epithelial barrier function by inducing the production of antimicrobial peptide pBD- 1 and pBD-2 in monolayers of porcine intestinal epithelial IPEC-J2 cells. Mol Nutr Food Res. 2016;60(5):1048–58.

Kitinoja L,Saran S, Roy SK, Kader AA. Postharvest technology for developing countries:Challenges and opportunities in research, outreach and advocacy. Journal of the Science of Food and Agriculture. 2011;91:597-603.

Davidson PM, Naidu AS. Phytophenols. In: Naidu AS, editor. Natural Food Antimicrobial Systems. Boca Raton, FL: CRC Press. 2000;265-294.